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Abstract
The search for relevant and actionable information is a key to achieving clinical and research goals in biomedicine.

Biomedical information exists in different forms: as text and illustrations in journal articles and other documents, in

images stored in databases, and as patients’ cases in electronic health records. This paper presents ways to move beyond

conventional text-based searching of these resources, by combining text and visual features in search queries and

document representation. A combination of techniques and tools from the fields of natural language processing, information

retrieval, and content-based image retrieval allows the development of building blocks for advanced information

services. Such services enable searching by textual as well as visual queries, and retrieving documents enriched by

relevant images, charts, and other illustrations from the journal literature, patient records and image databases.

Category: Convergence computing

Keywords: Multimodal biomedical information retrieval; Natural language processing; Content-based information

retrieval; Image processing; Advanced information services

I. INTRODUCTION

The importance of illustrations in scientific publica-

tions is well-established. In a survey of information needs

of researchers and educators, Sandusky and Tenopir [1]

found that scientific journal-article components, such as

tables and figures, are often among the first parts of an

article scanned or read by researchers. In addition, the

survey participants indicated that having access to the

illustrations (we use “images,” “illustrations,” and “figures”

interchangeably when referring to visual material in our

set of medical articles) prior to obtaining the whole publi-

cation would greatly enhance their search experience. In

the biomedical domain, Divoli et al. [2] found that bio-

science literature search systems, such as PubMed, should

show figures from articles alongside search results, and

that captions should be searched, along with the article

title, metadata, and abstract. Simpson et al. [3] showed

that, for the system presented in this paper, retrieval of

case descriptions similar to a patient’s case was signifi-

cantly improved with the use of image-related text.

The clear need for a multimodal retrieval system on the

one hand, and the sufficient maturity of the information

retrieval (IR) and content-based image retrieval (CBIR)

techniques on the other, motivated us to implement a pro-

totype multimodal system (called OpenI) for advanced

information services. These services should enable:
● Searching by textual, visual and hybrid queries
● Retrieving illustrations (medical images, charts, graphs,

diagrams, and other figures)
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● Retrieving bibliographic citations, enriched by rele-

vant images
● Retrieving from collections of journal literature,

patient records, and independent image databases
● Linking patient records to literature and image data-

bases, to support visual diagnosis and clinical deci-

sion making

This paper first presents an overview of the processes

involved in preparing multimodal scientific articles for

indexing and retrieval. It then briefly introduces a distrib-

uted architecture that allows for both processing the orig-

inal documents in reasonable time (for example, extracting

image features from thousands of images in just a few

hours), and for real-time retrieval of the processed docu-

ments. The paper concludes with a discussion of the

implemented system prototype (Fig. 1) that currently pro-

vides access to over 600,000 figures from over 250,000

medical articles, evaluation of the algorithms constituting

the system, and future directions in multimodal retrieval

and its evaluation. 

II. BUILDING BLOCKS FOR ADVANCED 
INFORMATION SERVICES

To prepare documents for indexing and retrieval, we

combine our tools and those publicly available, in a pipe-

line that starts with acquiring data and ends in the genera-

tion of MEDLINE citations enriched with image-related

information (henceforth, “enriched citations”). The initially

separate text and image processing pathways merge to

create multimodal indexes, for use with specialized mul-

timodal information retrieval algorithms in Fig. 2. The

images and text data in the current prototype are obtained

from the open access subset of PubMed Central (PMC),

using the PMC file transfer protocol (FTP) services

(http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/). This

Fig. 1. Textual search results in the list view of the OpenI system. The navigation panel on the left allows filtering and sorting search
results along several facets. The pop-up window that appears on scrolling over the image provides a brief, but key, summary of the
information in the article.

Fig. 2. Overview of image and text processing steps for
creating enriched citations. The text processing module (see
Section III) extracts descriptions of images and image captions
from the full text articles, to enrich the MEDLINE citation of the
article containing the image. The image processing module (see
Section IV) extracts the low-level visual features used in image
modality classification and image clustering. The image clusters
are labeled with alphanumeric strings (“cluster words”).
Subsequently, image features are represented using the cluster
words. The cluster words pertaining to an image are added to its
enriched citation, along with the image modality label. An
example enriched citation is shown in Fig. 3.
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full-text archive of biomedical publications provides the

text of each article in extensible markup language (XML)

format, and all published figures as JPEG files. The XML

files serve as input to the modules assembled in the text

processing pipeline, and the images are processed through

the image processing pipeline. Several image processing

modules (for example, modality classifiers) require out-

put of the text processing modules as additional input.

The output of the document processing pipeline is a set

of enriched MEDLINE citations in XML format that is

subsequently indexed with the National Library of Medicine

(NLM)’s domain-specific search engine Essie [4], as well

as with the widely-used open-source search engine Lucene

(http://lucene.apache.org/). An enriched citation consists

of three parts: 1) the original bibliographic citation obtained

using E-Utilities (http://www.ncbi.nlm.nih.gov/corehtml/

query/static/eutils_help.html); 2) the image caption and

image-related paragraphs extracted from the full-text of

the article, along with salient information extracted from

this free text and stored in structured form; and 3) image

features expressed as searchable alphanumeric strings,

along with the image uniform resource identifier (URI),

for display in the user interface.

Some of the processing steps (such as extracting ele-

ments of an XML document) are well-known, and will be

omitted here. We will focus instead on the overall process

flow, and the unique challenges and opportunities pre-

sented by images found in biomedical publications.

A. Generating an Enriched Citation

The OpenI document processing system is developed

in Java, and uses Hadoop MapReduce (Apache Software

Foundation, Los Angeles, CA, USA) to parallelize text

processing and image feature extraction. An enriched

citation object is generated in the text processing pipe-

line, which is presented in Section III. Images are pro-

cessed independently, and the information extracted from

the images is added to the enriched citation in the final

merging step. 

One challenge in image processing arises from several

illustrations combined into one figure. These multi-panel

(or compound) images found in many articles reduce the

quality of image features, if the features are extracted

from the whole image. For feature extraction, therefore,

these images need to be first separated into distinct pan-

els. This process is described in Section V. 

In addition to the text and image features necessary for

retrieval, each enriched citation also contains meta-infor-

mation derived from the basic features (such as the medi-

cal terms found in the captions and mapped to the unified

medical language system [UMLS] [5] concepts). This

meta-information is used to filter and re-rank search results.

For example, the results could be restricted to radiology

images using the modality classification results, or re-

ranked to promote articles focused on genetics (identified

as such by genetics-related concepts in the titles, Medical

Subject Heading [MeSH] terms, and captions). The cur-

rently available filters are described in Section VI. 

III. TEXT PROCESSING 

The text processing begins with the extraction of the

image caption and the paragraph(s) discussing the figure

(“mentions”). In the PMC documents, captions are a defined

XML element. We extract the mentions using regular

expressions: we first find an indicator that a figure is

mentioned, usually, words “Figure” or “Fig” (sometimes

within mark-up tags or punctuation) followed by a num-

ber, and then extract the paragraph around the indicator.

Next, the caption processing module determines if the

caption belongs to a multi-panel figure. The rule-based

system is looking for sequences of alphanumeric charac-

ters that are included within repeating tags, or followed

by a repeating punctuation sign (for example, A. B. C.) If

a sequence is found, the number of panels and the panel

labels are added to the enriched citation.

The next module extracts the descriptions of image

overlays (such as arrows), and regions of interest (ROI)

indicated by the overlays [6]. The ROI descriptions added

to the enriched citations are currently a searchable field.

The whole output of the module is needed for our ongo-

ing research, in building a visual ontology that will asso-

ciate the UMLS concepts with specific image features.

Finally, a concept extraction module submits the cap-

tions and mentions to MetaMap [7], which identifies

UMLS concepts in the text. The module then applies

rules and stop-word lists to the MetaMap output, to

reduce the set of the identified UMLS concepts to the

salient disorder, intervention and anatomy terms [8]. Fig. 3

shows an enriched citation in XML format. 

IV. IMAGE PROCESSING

Low-level visual features, such as color, texture, and

shape, are insufficient for capturing image semantics, but

they are the primary building blocks of the visual content

in an image. They can be effective, if a judiciously selected

feature metric is used to capture the visual content in an

image, and then incorporates it into a suitable machine-

learning framework that supports multi-scalar and con-

cept-sensitive visual similarity. In the OpenI prototype

system, the low-level visual features extracted from the

whole set of images are first clustered using the k-means

algorithm, and then the resulting clusters are labeled with

alphanumeric strings (“cluster words”) that serve as clus-

ter identifiers. The images are then annotated with the

cluster identifier of each low-level feature. These cluster

words are added to the enriched citation in Fig. 3, as the

last document preparation step. The enriched citation field
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containing cluster words is indexed in the same manner

as the rest of the citation. 

A. Feature Extraction

Images in the open access PMC collection are of dif-

ferent sizes. In order to obtain a uniform measure with

greater computational efficiency, we compute features

from images that are reduced to a common size, measur-

ing 256 × 256 pixels. In the future, we intend to process

images at a significantly higher (or full) resolution, to extract

meaningful local features.

1) Color Features

Color plays an important role in the human visual sys-

tem, and measuring its distribution can provide valuable

discriminating data about the image. We use several color

descriptors to represent the color in the image. To repre-

sent the spatial structure of images, we utilize the color

layout descriptor (CLD) [9] specified by MPEG-7 [10].

The CLD represents the spatial layout of the images in a

compact form, and can be computed by applying the dis-

crete cosine transformation (DCT) to the 2D array of

local representative colors in the YCbCr color space,

where Y is the luminance component, and Cb and Cr are

the blue and red chrominance components, respectively.

Each color channel is 8-bits, and is represented by an

average value computed over 8 × 8 image blocks. We

extract a CLD with 10 Y, 3 Cb, and 3 Cr components, to

form a 16-dimensional feature vector. 

Another feature used is the color coherence vector

(CCV) [11] that captures the degree to which pixels of

that color are members of large similarly colored regions.

A CCV stores the number of coherent versus incoherent

pixels with each color, thereby providing finer distinc-

tions than color histograms. Color moments, also com-

puted in the perceptually linear L*a*b* color space, are

measured, using the three central color moment features:

mean, standard deviation, and skewness. Finally, 4 domi-

nant colors in the standard red, green, blue (RGB) color

space and their degrees are computed, using the k-means

clustering algorithm. 

2) Edge Features

Edges are not only useful in determining object out-

lines, but their overall layout can be useful in discriminat-

ing between images. The edge histogram descriptor

(EHD) [9], also specified by MPEG-7, represents a spa-

tial distribution of edges in an image. It computes local

edge distributions in an image, by dividing the image into

4 × 4 sub-images, and generating a coarse-orientation

histogram from the edges present in each of these sub-

images. Edges in the image are categorized into five types:

vertical, horizontal, 45 × diagonal, 135 × diagonal, and other

Fig. 3. Enriched MEDLINE citation.
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non-directional edges. A finer-grained histogram of edge

directions (72 bins of 5 × each) is also constructed from

the output of a Canny edge detection algorithm [12] oper-

ating on the image. This feature is made invariant to image

scale, by normalizing it with respect to the number of

edge points in the image.

3) Texture Features

Texture measures the degree of “smoothness” (or

“roughness”) in an image. We extract texture features

from the four directional gray-level co-occurrence matri-

ces (GLCM) that are computed over an image. Normal-

ized GLCMs are used to compute higher order features,

such as energy, entropy, contrast, homogeneity and maxi-

mum probability. We also compute Gabor filters to cap-

ture image gist (coarse texture and spatial layout). The

gist computation is resistant to image degradation, and

has been shown to be very effective for natural scene

images [13]. Finally, we use the discrete wavelet trans-

form (DWT) that has been shown to be useful in multi-

resolution image analysis. It captures image spatial fre-

quency components at varying scales. We compute the

mean and standard deviation of the magnitude of the ver-

tical, horizontal, and diagonal frequencies at three scales.

4) Average Gray Level Feature

This feature is extracted from the low-resolution scaled

images, where each image is converted to an 8-bit gray-

level image, and scaled down to 64 × 64 pixels, regard-

less of the original aspect ratio. Next, this reduced image

is partitioned further with a 16 × 16 grid, to form small

blocks of (4 × 4) pixels. The average gray value of each

block is measured and concatenated, to form a 256-

dimensional feature vector.

5) Other Features

We extract two additional features using the Lucene

image retrieval engine (LIRE) library: the color edge

direction descriptor (CEDD) and the fuzzy color texture

histogram (FCTH) [14]. CEDD incorporates color and

texture information into a single histogram, and requires

low computational power compared to MPEG-7 descrip-

tors. To extract texture information, CEDD uses a fuzzy

version of the five directional edge filters used in MPEG-

7 EHD that were described previously. This descriptor is

robust with respect to image deformation, noise, and

smoothing. The FCTH uses fuzzy high frequency bands

of the Haar wavelet transform to extract image texture.

V. MULTI-PANEL FIGURE SEGMENTATION

Independent of the caption processing module that out-

puts the number of panels and panel labels, two image-

feature based modules detect panel boundaries and panel

labels. The output of the three modules is used in the

panel splitting module. 

The image-feature based panel segmentation module

determines if an image contains homogeneous regions that

cross the entire image. If no homogeneous regions are

found, the image is classified as single-panel. If homoge-

neous regions are found, the panel segmentation module

iteratively determines if each panel contains homogenous

regions, and finally outputs coordinates of each panel.

The label detection module [15] first binarizes the image

into black and white pixels, then, searches the image for

connected components that could represent panel labels,

and then applies optical character recognition (OCR)

methods to the connected components. Finally, the most

probable label sequences and locations are selected from

all candidate labels, using Markov random field modeling.

The label splitting module takes the outputs of the cap-

tion splitting, panel segmentation and label detection mod-

ules, and splits the original figure if the following

conditions are met: all three modules agree on the num-

ber of panels, and the caption splitting and label detecting

modules agree on the labels (this happens for approxi-

mately 30% of the multi-panel figures). If the panel seg-

mentation or the label detection modules fail completely,

the image cannot be split. However, if the modules par-

tially agree on labels, and position some of the labels at

the corners of the corresponding panels, heuristics help to

compensate for the partial errors of individual modules,

and the combined information helps correctly split another

40% of the multi-panel images. The images on which the

algorithm fails are processed as single-panel images. All

images are displayed in the original form.

VI. OPENI SYSTEM ARCHITECTURE

OpenI uses VMware vSphere 4 (VMware Inc., Palo

Alto, CA, USA) and a high-performance Linux based

storage area network (SAN) to support a fault-tolerant,

scalable, and efficient production-grade system. A high-

performance SAN storage cluster that was built using

Red Hat Enterprise Linux (Red Hat, Raleigh, NC, USA)

provides OpenI with a dedicated, reliable, predictable and

high-performing storage system for the Hadoop cluster.

VMware vSphere 4 is used to virtualize the Hadoop

Namenode, and run it in fault-tolerant mode. The fault-

tolerance feature of VMware allows a single virtual

machine to run simultaneously on two hardware servers.

Further, vSphere monitors the heartbeat of the Namen-

ode, and restarts it automatically if it should become

inoperable. These features eliminate the single point of

failure, and turn Hadoop into a stable and reliable devel-

opment and research platform. Finally, vSphere is used to

make OpenI processes run efficiently on multi-core CPUs.

Each compute node running processes that are not multi-

core aware can be created as a virtual machine tied to a

specific physical core.
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VII. OPENI IMAGE RETRIEVAL SYSTEM

The OpenI prototype (http://openi.nlm.nih.gov/) cur-

rently supports image retrieval for textual, visual and

hybrid queries. The images submitted as queries are pro-

cessed as described above, and represented using cluster

“words”. After this processing step, the cluster “words”

are treated as any other search terms. 

Based on the principles developed by [16], the search

results are displayed either on a grid that allows a view of

all top 20 retrieved images (Fig. 4), or as a traditional list

in Fig. 1. In either layout, scrolling over the image brings

up a pop-up window that, along with the traditional ele-

ments of search results, such as titles and author names,

provides captions of the retrieved images, and short sum-

maries of the articles.

The summaries are obtained through RIDeM services

(http://clinicalreferences.nlm.nih.gov/ridem). The summa-

ries (or “bottom-line” patient-oriented outcomes extracted

from abstracts) are generated by extracting three sen-

tences most likely to discuss patient-oriented outcomes of

the methods presented in the paper [17]. The probability

of a sentence to be an outcome is determined by a meta-

classifier that combines outputs of several base classifiers

(such as a Naïve Bayes classifier, and classifiers based on

the position of the sentence in the abstract, or the pres-

ence of relevant terms in the sentence).

Once the search results are displayed, the users can

find similar images in the results and in the entire collec-

tion, by following links that perform new search requests

for images visually similar to the currently selected image.

These new searches are based purely on image features.

Users may view all other images in a given paper without

leaving the initial search page, and drill down to the full

enriched citation in Fig. 5.

The search results can also be filtered using the follow-

ing facets: 1) image type; 2) subsets of publications, for

example, systematic reviews; 3) clinical specialties; 4)

enriched citation fields.

A. Image Type

The image type filter is based on our classification of

images into eight medical images modalities, such as

magnetic resonance imaging (MRI), x-ray, computed

tomography (CT), and ultrasound. Our method [18] uses

a support vector machine (SVM) to classify images into

multiple modality categories. The degree of membership

in each category can then be used to compute the image

modality. In its basic formulation, the SVM is a binary

classification method that constructs a decision surface,

and maximizes the inter-class boundary between the sam-

ples. To extend it to multi-class classification, we com-

bine all pair-wise comparisons of binary SVM classifiers,

known as one-against-one or pair-wise coupling (PWC).

Each SVM is trained for one image feature. The class

with the greatest estimated probability for each feature

accumulates one vote. The class with the greatest number

of votes after classifying for all features is deemed to be

the winning class, and the modality category of the class

is assigned to the image. When a user requests a specific

image type, a hard constraint on exactly matching the

image modality field of the enriched citation is imposed.

B. Subsets

Due to the nature of the collection, not all MEDLINE/

PubMed subsets (http://www.nlm.nih.gov/bsd/pubmed_

Fig. 4. Search results in a grid display.

Fig. 5. A view of an enriched citation in the user interface. The
ribbon at the top allows rapid navigation to other images in the
search results. The links at the bottom allow to link out to the
publisher’s site, PubMed or PubMed Central, and search for
similar images. Enriched citations can be sent using the email
icon. 
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subsets. html), such as the core clinical journals subset

(http://www.nlm.nih.gov/bsd/aim.html), are available in

OpenI. We used the subject field of the NLM’s List of

Serials Indexed for Online Users (http://wwwcf.nlm.nih.gov/

serials/journals/) to categorize the journals into clinical

specialties and subsets. Not all journals are assigned to

broad subject areas, and only publications in journals that

are assigned to an area will be retrieved, when a user

requests to filter the results by a subset or specialty.

Where available, we used the subset field of the original

MEDLINE citation. 

C. Enriched Citation Fields

The users can search the text in any combinations of

the following: titles, abstracts, captions, mentions, MeSH

terms, and author names. 

Finally, the search results could also be re-ranked

according to the users’ interests (indicated by selecting

advanced search options) along the following axes: 1) by

the date of publication (most recent or oldest first); 2) by

the clinical task that is discussed in the paper (diagnosis,

cause of the problem, prevention, prognosis, treatment,

etc.). The clinical task that was the focus of the study pre-

sented in a paper is determined using rules that take into

account specific MeSH terms. For example, the term

“Infectious Disease Transmission, Vertical/*Prevention

& Control” indicates that the task is prevention. The star

indicates that the publication is focused on prevention. 

VIII. RELATED WORK 

Several ongoing research efforts are dedicated to aug-

menting text results with images. Some of these efforts

aim to retrieve images by matching query text terms in

the citations to the articles and the figure captions. We list

five efforts related to our goals. Most systems do not use

image features to find similar images or combine visual

and text features for biomedical information retrieval. Our

goals include improving the relevance of multi-modal (text

and image) information retrieval, by including lessons

learned from these efforts.

The BioText [16] search engine searches over 300 open

access journals, and retrieves figures, as well as text. Bio-

Text uses Lucene to search full-text or abstracts of journal

articles, as well as image and table captions. Retrieved

results (displayed in a list or grid view) can be sorted by

date or relevance. This search engine has influenced our

user interface design.

Yottalook (http://www.yottalook.com/) allows multilin-

gual searching to retrieve information (text or medical

images) from the Web and journal articles. The goal of

the search engine is to provide information to clinicians

at the point of care. The results can be viewed as thumb-

nails or details. This site sets an example in the breadth of

its searches, capabilities to filter results on image modal-

ity and other criteria, being current with social media, and

connecting with the users’ myRSNA accounts (offered

by the Radiological Society of North America [RSNA]),

which allow saving of search results.

Other related work includes the Goldminer (http://gold-

miner.arrs.org/home.php) search engine developed by the

American Roentgen Ray Society (ARRS) that retrieves

images by searching figure captions in the peer-reviewed

journal articles appearing in the RSNA journals, Radio-

graphics and Radiology. It maps keywords in figure cap-

tions to concepts from the UMLS. Users have the options

to search by age/modality/sex for images, where such

information is available. Results are displayed in a list or

grid view.

The FigureSearch (http://figuresearch.askhermes.org/arti-

clesearch/index.php?mode=figure) system uses a super-

vised machine-learning algorithm for classifying clinical

questions, and Lucene for information retrieval over the

published medical literature, to generate a list view of the

results with relevant images, abstracts, and summaries.

The Yale image finder (YIF) [19] searches text within

biomedical images, captions, abstracts, and titles, to retrieve

images from biomedical journal papers. YIF uses optical

character recognition to recognize text in images, in both

landscape and portrait modes.

The image retrieval in medical applications (IRMA)

system (http://www.irma-project.org) primarily uses visual

features and a limited number of text labels that describe

the anatomy, biosystem, imaging direction, and modality

of the image for medical image retrieval. We have collab-

orated with the developers of the IRMA system, and

enhanced their image retrieval system (which uses fea-

tures computed on the gross image), with our image fea-

tures and similarity computation techniques applied to

local image regions [20].

Increasing commercial interest in multi-modal infor-

mation retrieval in the biomedical domain is indicated by

the industry teams participating in the ImageCLEFmed

(http://www.imageclef.org/2012/medical) evaluations ded-

icated to retrieval of medical images and similar patients’

cases. Participants include researchers from Siemens, GE

Medical Systems, Xerox, and other industrial organiza-

tions. Publishers such as Springer also provide text-based

image retrieval (http://www.springerimages.com/). Other

commercial image search engines include those devel-

oped by Google, Gazopa, and Flickr.

IX. EVALUATION 

Saracevic [21] defines six levels of evaluation of

information retrieval (IR) systems: 1) the engineering level

addresses speed, integrity, flexibility, computational effec-

tiveness, etc.; 2) the input level evaluates the document

collection, indexed by the system and its coverage; 3) the
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processing level assesses performance of algorithms; 4)

the output level evaluates retrieval results and interac-

tions with the system; 5) the use and user level evaluates

system performance for a given task; and 6) the social

level evaluates the impact of the system on research,

decision-making, etc.

OpenI is a complex system that has been evaluated

along several of the aforementioned axes: on engineer-

ing, processing, and output levels. Its modality classifica-

tion, ad-hoc image retrieval and case-based retrieval have

been evaluated within the ImageCLEFmed evaluations

since 2007. The OpenI results are steadily in the leading

group, achieving, for example, 92% accuracy in the

modality classification task in 2010, and 0.34 mean aver-

age precision in case-based retrieval in 2009. 

In addition to testing the overall retrieval performance

of the system, we have evaluated the benefits of enrich-

ing MEDLINE citations with image captions and pas-

sages pertaining to images [3]. As mentioned above, these

passages significantly improved case-based retrieval.

Other evaluations of the parts of the document prepara-

tion steps include evaluation of multi-panel image seg-

mentation, and evaluation of the processes involved in

automatic generation of a visual ontology, such as the

ROI and ROI marker extraction from text and images.

Overall, the panel splitting module achieves 80.92% pre-

cision at 73.39% recall. The ROI marker extraction from

text achieves 93.64% precision and 87.69% recall, whereas

ROI identification is at 61.15% accuracy [6]. The ROI

marker extraction (limited to arrows) ranges from 75% to

87% accuracy for different arrow types [22].

User level evaluations are often approximated with site

visits and click-through data [23]. To that end, we are

monitoring the numbers of unique visitors per day, which

for May 2012 is at approximately 700 on average, and

shows a growing trend. We are also planning a social

level experiment (with members of particular research

and clinical communities) to evaluate the effectiveness of

OpenI in assisting with specific tasks.

X. FUTURE WORK 

The deployment of the prototype system and the archi-

tecture presented in this paper allows continuing research

in several directions. First, we are interested in the usabil-

ity of the current user interface, and the usefulness of the

search features. Second, we are expanding and improving

the extraction of the basic image features, and the selec-

tion of these features for various higher-level tasks, such

as image modality classification, image ROI recognition,

and building a visual ontology. The latter task includes

associating specific image features with the UMLS con-

cepts. Recognizing that many researchers would like to

focus on specific aspects of image retrieval, for example

improving retrieval methods or text understanding, we

plan to provide our current document processing methods

as publicly available services. 
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